CHEMIE DER URANYLCARBONATE I.* SYSTEM RUTHERFORDIN-SHARPIT-SCHOEPIT

J.ČEJKA und Z.URBANEC

Nationalmuseum-Naturwissenschaftliches Museum 115 79 Prag 1 und Institut für Kernforschung 250 68 Prag - Řež

Eingegangen am 8. April 1972

Es wird das System UO₃—CO₂—H₂O unter normalen und hydrothermalen Bedingungen untersucht. Es werden vier Phasen beschrieben: A (α -UO₃.2 H₂O), B (UO₃.0,80 CO₂.1,06 H₂O), C (UO₂CO₃.2,2 H₂O) und HT (UO₂(CO₃)_{1-x} (OH)_{2x}, ($x \ge 0$), die mit den Methoden der chemischen, thermischen und röntgenometrischen Phasenanalyse und Infrarotspektroskopie identifiziert wurden. Die hergestellten Phasen werden mit Rücksicht auf das System der sekundären Uraminerale Rutherfordin-Sharpit-Schoepit besprochen.

Das System $UO_3 - CO_2 - H_2O$ wird in der Natur durch die sekundären Uranminerale Rutherfordin, UO_2CO_3 , Sharpit 5 UO_2CO_3 , $UO_2(OH)_2$.7 H_2O und Schoepit, UO_3 .2 H_2O repräsentiert¹. Da es sich um verhältnismäßig seltene Minerale handelt, namentlich hinsichtlich der beiden Carbonate, mußte die Untersuchung der natürlichen Materialien auch durch Untersuchung der synthetischen Verbindungen ergänzt werden. Während Uran(VI)-oxid und seine Hydrate trotz einer Reihe sich widersprechender Angaben genügend beschrieben werden², ist hinsichtlich des Rutherfordins wesentlich weniger und über das Sharpit und seine Synthese fast nichts bekannt. Rutherfordin wurde im Jahre 1949 hergestellt³. Es wurde eine Reihe von die Herstellung, die thermische Zersetzung, die Struktur und die Thermodynamik des Entstehens sowie die die Hydrolyse des Rutherfordins behandelnden Arbeiten publiziert. Die thermodynamischen Berechnungen gingen jedoch von vereinfachten Vorstellungen aus und respektierten beispielsweise die Möglichkeiten des Entstehens Fester Lösungen nicht, so daß es in ihnen zu einer Reihe von Ungenauigkeiten und Widersprüchen kam, wie aus dem Zitat⁴ hervorgeht.

In dieser Arbeit machten wir es uns zur Aufgabe, das System $UO_3-CO_2-H_2O$ unter normalen und hydrothermalen Bedingungen in einem solchen Bereich zu beschreiben, daß die gewonnenen Ergebnisse sowohl in der Chemie der komplexen Uranverbindungen als auch in Prozessen der Hydratations-Oxydationsverwitterung primärer Uranminerale verwertet werden können. Diese Mitteilung beschäftigt sich vor allem mit der Beschreibung der Herstellung und der Eigenschaften der einzelnen hergestellten Phasen.

Wir richteten unsere Aufmerksamkeit auf die bei der Untersuchung beobachteten Eigenschaften der Phasen, die aus amorphen UO_3 und U_3O_8 oder aus ihren hydratisierten Formen

^{*} Zum Teil an der 7. ganzstaatlichen Konferenz über anorganische Chemie in Prag vom 15.-17. 9. 1971 in Prag vorgetragen.

(UO₃.2 H₂O, α -UO₃.H₂O, U₃O₈.x H₂O) bei verschiedenen Temperaturen und verschiedenen Kohlendioxidpartialdrücken entstehen. Die entstandenen Phasen wurden von uns auf Grund der im Infrarotspektrum beobachteten Absorptionsbanden, die mit den Schwingungen der Carbonat-, Uranyl- und Hydroxylgruppe und den Schwingungen des Molekülwassers verbunden sind, in Korrelation mit den Angaben der chemischen, Röntgenstruktur- und thermischen Analyse klassifiziert.

EXPERIMENTELLER TEIL

Verwendete Chemikalien. $UO_2(NO_3)_2.6 H_2O$ war rein, bei den übrigen Chemikalien handelte es sich um analysenreine Präparate.

Herstellung der einzelnen Phasen. Amorphes UO₃ wurde durch thermische Zersetzung von Uranperoxid, UO₄.2 H₂O (hergestellt durch Fällen einer wäßrigen Lösung von UO₂(NO₃)₂. 6 H₂O mittels Wasserstoffperoxids) bei 300°C oder von α -UO₃.H₂O bei 400°C gewonnen. U₃O₈ wurde durch Glühen von UO₄.2 H₂O auf 800°C während 2 Stunden hergestellt. Das Dihydrat des Uran(VI)-oxids, α -UO₃.2 H₂O, wurde auf zweierlei Weise gewonnen: a) durch Hydratation von amorphem UO₃ in wäßriger Suspension bei ca. 20°C. UO₃-Gehalt: berechnet 88,87%, gefunden 88,70%, b) durch Oxydation von U₃O₈+y-x H₂O in wäßriger Suspension durch Luftsauerstoff⁵. UO₃-Gehalt: berechnet 88,87%, gefunden 88,70%. Hydratisiertes Uranoxid, ,violettes Hydrat" mit der Zusammensetzung U₃O₈+y-x H₂O wurde durch photochemische Reduktion von Uranylnitrat in Äthanol hergestellt⁶. Auf Grund der Zusammensetzung UO_{2,84}. H₂O entspricht es den von Bignand⁵ und Cordfunke und Mitarbeitern⁷ hergestellten Phasen. Die Herstellung und Zusammensetzung der übrigen untersuchten Phasen sind in Tabelle I (hydrothermal hergestellte Phasen) angeführt.

Analytische Methoden. Uran wurde gravimetrisch als U_3O_8 durch Glühen der Proben auf 800°C bestimmt. Das Verhältnis U/O wurde beim Überführen von UO_x in UO_{2,67} durch Kalzinieren bei 750–800°C ermittelt⁸. Der Gehalt an CO₂ und H₂O wurde mittels Elementaranalyse bestimmt.

Arbeitsgang. Die Herstellung der einzelnen Phasen wurde unter Normalbedingungen an der Luft durchgeführt, während die Herstellung der hydrothermalen Phase im Stahlautoklaven bei erhöhter Temperatur vorgenommen wurde. Kohlendioxid wurde bei der hydrothermalen Synthese in fester Form zugegeben, bei der Synthese unter Normalbedingungen gelangte gasförmiges Kohlendioxid zur Anwendung. Für die röntgenometrische Phasenanalyse wurde die Debye-Scherrersche Pulvermethode mit Hilfe des Apparates "Mikrometa I" (Chirana), CuKa-Strahlung, Nickelfilter und Kammer mit einem Durchmesser von 114,6 mm bei einer Exposition von 6 Stunden bei 20 mA und 40 kV herangezogen. In einigen Fällen kam auch das Röntgengoniometer der Firma Chirana, gleichfalls bei Verwendung der CuKa-Strahlung und eines Nickelfilters (16 mA, 28 kV, 1°/min), zur Anwendung. Die Infrarotspektren von Suspensionen der einzelnen Phasen in Nujol, ggf. in Fluorolube wurden mit Hilfe der Apparate "Perkin-Elmer-225" und UR-10 (Zeiss) gemessen. Die Differentialthermoanalyse wurde mittels des Apparates der Gebrüder Netzsch unter Bedingungen der statischen Atmosphäre an der Luft durchgeführt. Die Proben wurden in Platingefäßen in direkter Verbindung mit der Pt/PtRh-Schweißnaht des Thermoelements im Korundblock angebracht. Als Standardsubstanz diente sehr feines, geglühtes Al₂O₃. Bei Einwaagen von 30 mg und darunter gelangte die sog. "sandwich packing"-Methode zur Anwendung. In einigen Fällen wurden die Proben noch mit Aluminiumoxid verdünnt⁹. Die thermische Analyse wurde mit dem Derivatographen "Erdey-Paulik-Paulik" durchgeführt.

TABELLE I

Herstellung der Phasen unter Laboratoriumsbedingungen

Droho	Harstallun oshadin gun gan	Ν	Molverhältnis		
Probe	riersteinungsbedingungen	UO_3	CO2	H ₂ O	
1	Oxydation der wäßrigen Suspension von $U_3O_{8+y}xH_2O$ mit Luftsauerstoff $\longrightarrow UO_3.2H_2O$				
	$UO_3.2 H_2O + H_2O + CO_2 - 8 Std.$	1	0,80	1,06	
2	$UO_3 \text{ (amorph)} \xrightarrow{H_2O, 2 \text{ Tage}} UO_3.2 \text{ H}_2O$	1	0,05	1,93	
3	Probe Nr. 2, 3 Monate an der Luft im trockenen Zustand	1	0,04	2,01	
4 ^{<i>a</i>}	Probe Nr. 2, 1 g/100 ml H_2O , 1 Jahr an der Luft	1	0,40	2,03	
5	UO ₃ (amorph), 1 g/100 ml H ₂ O 1 Jahr an der Luft	1	0,53	2,19	
6 ^b	$UO_4.2 H_2O \xrightarrow{800^\circC, 2 \text{ Stunden}} U_3O_8$ $U_3O_8, 1 g/100 \text{ ml } H_2O, 1 \text{ Jahr an der Luft}$	1	1,01	2,20	

^{*a*} Das Volumen der wäßrigen Suspensionen der Proben 4, 5, 6, wurde durch Wasserzugabe konstant gehalten. ^{*b*} Kristallisierte an der Wand aus wäßrigen Lösungen unter nichtregulierten Bedingungen (wurde von hier isoliert); am Boden blieb ein inhomogenes Gemisch von U_3O_8 und weiteren, aus diesem durch Hydratations-Coxydationsprozesse entstandenen Phasen.

TABELLE II						
Herstellung der	Phasen	unter	hydrothermalen	Bedingungen	28 ml-Stahlaut	oklav

Numme	T Auconsoulatons	~ CO /m1 ^a	Herstellung	Trocknung	Molverhältnis		
der Prot	Ausgangssubstanz	g CO ₂ /III	°C/h	°C/h	UO_3	CO_2	H_2O
7	$UO_3 \cdot 2 H_2O + H_2O$	0,5	200/24	Infralampe	1	1,06	0,28
8	$UO_3.2 H_2O + H_2O$	$\sim 0,2^{b}$	190/19	110/1	1	0,83	0,49
9	$\alpha - UO_3 H_2O + H_2O$	$\sim 0,2^{b}$	210/46				
			und				
			190/48	110/1	1	1,04	0,10
10	$UO_{3.2} H_{2}O + H_{2}O$	$\sim 0, 2^{b}$	220/22	170/0,5	1	1,09	0,59
11	amorph. $UO_3 + D_2O$	0,14	205/24	Evakuierung ^c	1	1,05	
12	amorph. $UO_3 + D_2O$	0,09	215/19	Evakuierung	1	1,07	0,17

^a Freier Raum des Autoklaven, ^b entspricht der Füllung im Bereich von 0,1-0,3 g/ml, ^c evakuiert im Exsikkator beim Druck von ca. 5 Torr/20-30 min.

ERGEBNISSE UND DISKUSSION

In der vorliegenden Arbeit wurde von uns untersucht: a) die Herstellung von Uranylcarbonat unter Laboratoriumsbedingungen (Temperatur ca. 20°C, Luftdruck ca. 1 atm) durch Sättigen einer wäßrigen UO₃.2 H₂O-Suspension mit Kohlendioxid, b) die Herstellung von Uranylcarbonat unter hydrothermalen Bedingungen, c) Absorption des Kohlendioxids aus der Luft unter Laboratoriumsbedingungen durch UO₃-Dihydrat im trocknenen Zustand, d) Absorption von Kohlendioxid aus der Luft durch wäßrige Suspensionen von amorphem UO₃, U₃O₈ und UO₃.2 H₂O unter Laboratoriumsbedingungen. Im Versuchsverlauf wurden von uns strukturel unterschiedliche Phasen isoliert, die als Phasen A, B, C und HT bezeichnet wurden.

Phase A, α-UO₃.2 H₂O. Dieser Phase entsprechen die Proben Nr. 2 und 3 in Tabelle I. Die Röntgenogramme der Proben sind in Tabelle III und die DTA-Kurven in Abb. 1 angeführt. Das durch Hydratation des amorphen UO₃ hergestellte α-UO₃. 2 H₂O ist an der Luft im trockenen Zustand unter Normalbedingungen beständig. Insofern im Herstellungsverlauf Kohlendioxidabsorption aus der Luft eintritt (in unserem Fall ca. 0,5%, siehe Probe Nr. 2), erfolgt, wie aus der Zusammensetzung der Probe Nr. 3 hervorgeht, bei langandauernder Exposition an der Luft im trockenen Zustand Absinken des Kohlendioxidgehaltes. Es ist aber nicht ausgeschlossen, daß das in unseren Proben enthaltene Kohlendioxid bereits durch das Uranperoxid im Verlauf seiner Herstellung absorbiert wurde und sich dabei, wie von Hoekstra und Siegel⁸ angeführt wird, Uranylcarbonat bildete. Wie aus dem DTA-Kurvenverlauf her-

DTA, Empfindlichkeit 0,25; Erhitzungsgeschwindigkeit 10°C/min; 1 Probe Nr. 2 (0,75 g), 2 Probe Nr. 3 (0,15 g).

DTA, Empfindlichkeit 0,25, Erhitzungsgeschwindigkeit 10°C/min; 1 Probe Nr. 1 (0,35 g), 2 Probe Nr. 7 (0,10 g), 3 Probe Nr. 10 (0,10 g).

2330

TABELLE III

Debyegramm der Phase A und des Schoepits

I Prob	Phase A, UO ₃ .2 H ₂ O Probe Nr. 2 Probe Nr. 3		Nr. 3	Schoe	Schoepit ³⁷		H ₂ O ³⁸ te Werte
d	Irei	d	Irel	d	Irel	d	hkl
7,32	10	7,35	10	7,37	100	7,37	002
						6,61	210
						6,77	012
				3,65	50	3,685	004
3,55	10	3,56	8	3,57	70	3,59	400
						3,51	420
3,47	8	3,46	6	3,47	50	3,49	402
3,19	9	3,22	9	3,22	90	3,22	401
3,14	6	3,13	4	3,13	50	3,17	402
						3,00	134
						2,78	060
2,59	5	2,56	4	2,56	50	2,575	404
						2,55	261
		2,46	1	2,44	30	2,455	006
						2,28	602
		2,21	1			2,25	036
		2,13	1				
		2,08	2	2,09	10	2,08	640
				2,06	10	2,07	406
2,01	3	2,03	5	2,01	70	2,03	246
						2,00	642
						2,01	604
						2,005	082
1,965	2	1,955	6	1,984	30	1,98	614
						1,842	008
				1,829	10	1,826	108
		1,798	1	1,801	10	1,795	800
		1,785	1				
1,768	2	1,763	3				
				1,753	10		
1,733	1	1,741	2				
1,608	1	1,605	. 1				
		1,446	1				
		1,350	1				
		1,270	1				

vorgeht, handelt es sich in diesem Fall um α -UO₃.2 H₂O (siehe^{2,10,11}). Ebenso wird durch Zerlegen der Infrarotspektren beider Proben (Tab. IV) bestätigt, daß es sich um das α -Dihydrat des Uran(VI)-oxids handelt, wobei von uns die vereinfachte Formulierung verwendet wird, wiewohl es hier um einen hydratisierten Uranylhydroxokomplex geht¹². Durch Applikation dieser Beobachtung beim Mineral Schoepit, kann gefolgert werden, daß es unter diesen Bedingungen gleichfalls relativ sehr beständig ist und keinen markanten Veränderungen unterliegt.

Phase B, $[UO_2(CO_3)_{1-x}(OH)_{2x}]$.y H₂O. Die Phase B entsteht durch Sättigung der wäßrigen Suspension von UO₃.2 H₂O mit Kohlendioxid unter normalen Bedingungen. Das gefundene Molverhältnis UO₃ : CO₂ : H₂O beträgt 1 : 0,80 : 1,06. Wie sich durch röntgenometrische Analyse ergibt, weist diese Phase eine Struktur auf, die mit der des Uranylcarbonats (Rutherfordin) übereinstimmt und auch mit den unter hydrothermalen Bedingungen hergestellten Phasen in Übereinstimmung steht. Darüberhinaus beinhaltet das Debyegramm der Phase B einige schwache Linien, die der im weiteren beschriebenen Phase C angehören könnten. Die Debyegramme der Phase B, der die Probe Nr. 1 entspricht und des Rutherfordins, sind in Tabelle V angeführt. Markante Unterschiede zeigen sich jedoch im thermischen Verhalten

TABELLE IV

Infrarotspektren der Phase A

Intensitätsgrad: sst = stark, st = stark, m = mittel, sch = schwach, ssch = sehr schwach; b = breites Band, sm = scharfes Maximum, schul = Schulter, () = größere Ungenauigkeit beim Ablesen der Wellenzahl als 0,5%, s = sehr.

Interpretation	Phase A	Probe Nr. 2	Probe Nr. 3
v(U—O)	444 m, sm	444 m, sm	444 m, sm
v(UO)	465 sch	465 sch	465 sch
ν(UO)	547 m, sm	547 m, sm	547 m, sm
ν _s (OUO)	840 ssch, sm	840 ssch, sm	840 ssch, sm
δ(UOH)?	911 ssch	911 ssch	911 ssch
v _{as} (OUO)	958 st, sm	958 st, sm	958 st, sm
δ(UOH)	1 010 m-sch	1 010 m-sch	1 010 m-sch
$\delta(H_2O)$	(1 590) schul	(1 590) schul	(1 590) schul
$\delta(H_2O)$	1 625 m, sm	1 623 m, sm	1 627 m, sm
v(OH)	3 190 m, sb	3 180 m, sb	3 200 m, sb
ν(OH)	3 365 m, b	3 365 m, b	3 365 m, b

Chemie	der	Uranylcarbonate	I.
--------	-----	-----------------	----

TABELLE V

Debyegramme der Phasen B, HT und des Rutherfordins

Phas	e B	Phase	HT	UO ₂ CO ₃ ²⁹				
				Ruther	fordin	(berec	hnet)	
d	Irel	d	Irel	d	Irel	d	hkl	
7,20	1							
4,94	1							
4,60	7	4,58	10	4,61	100	4,603	020	
4,28	10	4,26	9	4,30	70	4,287	110	
3,86	6	3,87	8	3,92	30	3,893	011	
3,20	9	3,21	9	3,23	40	3,214	101	
2,61	4	2,63	5	2,64	25	2,635	121	
		2,59	1	2,60	6	2,592	130	
2,50	2	2,495	2	2,512	9	2,497	031	
2,42	1	2,42	1	2,420	15	2,423	200	
2,30	1	2,29	3	2,309	20	2,301	040	
a						2,148	002	
2,135	3	2,15	4	2,156	9	2,144	220	
2,05	5	2,05	5	2,062	20	2,057	211	
		1,941	1	1,953	4	1,947	022	
1,898	2	1,918	3	1,926	15	1,921	112	
1,860	1	1,867	2	1,879	9	1,871	141	
1,728	1	1,732	2	1,746	6	1,739	231	
		1,718	1	1,723	4	1,721	150	
		1,686	1	1,701	3	1,692	051	
		1,663	1	1,670	3	1,668	240	
		1,653	1	1,660	3	1,654	132	
				1,606	3	1,607	202	
1,588	1	1,603	1	1,593	3	1,591	310	
				1,572	2	1,570	042	
				1,537	6	1,534	060	
		1,510	2	1,514	3	1,517	222	
						1,512	303	
1,42	1	1,433	2	1,435	5	1,436	321	
			_			1,387	251	
		1,380	3	1,388	6	1,385	161	
				1,376	2	1,373	103	
		1,341	1	1,346	2	1,343	152	
		1,315	2	1,320	4	1,318	242	
						1,316	123	
		1,295	1	1,298	2	1,298	260	
		1,292	1	-		1,296	033	
		1,277	1	1,280	3	1,278	312	
		1,222	1	1,224	3	1,222	213	
		-,						

Collection Czechoslov. Chem. Commun. /Vol. 38/ (1973)

und Infrarotspektrum. Wie sich durch Vergleich mit den Ergebnissen anderer Autoren zeigte¹²⁻¹⁶, kann die thermische Zersetzung von Carbonaten ähnlicher Zusammensetzung wie die der Phase B im wesentlichen auf zweierlei Weise verlaufen. Falls zur Herstellung das durch Hydratation von UO₃ gewonnene UO₃.2 H₂O oder direkt UO3 herangezogen wurde und im Verlauf der Carbonatherstellung gleichzeitig seine Hydratation verlief, verläuft nach der Dehydratation und dem Freiwerden der OH---Gruppen bei den so gewonnenen Phasen Decarbonisation bei über 480-500°C liegenden Temperaturen und ist, wie aus dem Zitat¹³ hervorgeht, bei ungefähr 600°C beendet. Demgegenüber verläuft, wenn wie in unserem Fall durch Oxydation von U₃O_{8+v}.x H₂O gewonnenes UO₃.2 H₂O verwendet wird, die Decarbonisation in mindestens zwei Stufen. Die erste Stufe ist durch einen exothermen Peak auf der DTA-Kurve bei der Temperatur von 320-340°C charakterisiert, wobei in diesem Temperaturbereich die CO2-Abnahme in der Probe Nr. 1 analytisch ermittelt wurde, während die nachfolgende Endcarbonisation bei Temperaturen um 570-590°C verläuft (DTA-Kurve der Probe Nr. 1, Abb. 2 und Derivatogramm der Probe Nr. 1, Abb. 3). Dabei wird, wie bereits früher bestätigt wurde¹⁴⁻¹⁶, Uranylcarbonat, d. i. die Phase, die sich auf Grund ihrer Zusammensetzung dem UO2CO3 mit einem Wassergehalt von 0,2 mol zu UO2CO3 nähert, in einer Stufe decarbonisiert. Die Gewinnung einer solchen Phase ist jedoch von der Reaktivität der Eintrittsverbindungen, d. i. von UO₃, bzw. UO₃.2 H₂O bedingt, weshalb beispielsweise von Tsymbal¹⁷, der mit durch thermische Uranylnitratzersetzung gewonnenem y-UO3 arbeitete, lediglich das hydratisierte, ca. 1,6 H₂O auf 1 mol UO₂CO₃ enthaltende Uranylcarbonat hergestellt wurde, wiewohl er das Sättigen mit Kohlendioxid während 100 Stunden durchführte. Aus der uns zur Verfügung stehenden Literatur gelang es uns vorläufig nicht, den Verlauf der thermischen Zersetzung des Minerals Rutherfordin zu deduzieren, da uns lediglich die Angaben¹⁸ über das Freiwerden des CO₂ beim Erhitzen über 300°C und unbestimmte Informationen¹⁹ über das Freiwerden des CO₂ und des Sauerstoffs beim Erhitzen über 360° zur Verfügung stehen. Die von Beck²⁰ veröffentlichte DTA-Kurve des Rutherfordins gehört offensichtlich nicht zum Rutherfordin¹⁶. Wie aus der Zerlegung der Infrarotspektren der Phase B (Tab. VI) hervorgeht, sind die Frequenzen und der Charakter der mit den v1, v2 und v4-Schwingungen der CO_3^{2-} -Gruppe verbundenen Absorptionsbanden im Bereich von 600-1200 cm⁻¹ die gleichen wie die bei der hydrothermalen HT-Phase, die weiter unten besprochen wird. Es ändert sich lediglich die Frequenz der durch Spalten der im freien CO₂²⁻-Ion degenerierten v3-Modi entstandenen Banden. Im Spektrum der Phase B liegen die Wellenzahlen höher als 1432 und 1555 cm⁻¹ und das Spalten ist größer -123 cm⁻¹ als das bei den hydrothermalen Produkten, bei denen die Wellenzahlen beweglich sind und zwischen 1420 bis 1432 und 1509 bis 1529 cm⁻¹ liegen und das Spalten zwischen 82 bis 100 cm⁻¹ liegt. Dieses Faktum würde von einer größeren Deformation der CO₃²-Gruppe in der Phase B zeugen. Es wurden keine Gesetzmäßigkeiten in der Verschiebung der v3-Banden in den Spektren der hydrothermalen Phasen

TABELLE VI

Infrarotspektren der Phasen B und HT Erklärungen siehe Tabelle IV.

Interpretation	Phase B Probe Nr. 1	Phase HT I Proben Nr. 7, 8, 9	Phase HT II Proben Nr. 10, 11, 12
δ(OUO)?	222 ssch, m 227 ssch, sm	223 sch, sm	223 sch, sm
gitterförmig Schwingungen	253 st (270) schul 352 m (390) schul 467 sch	(243) schul 257 st 352,5 m, sm	(240) schul 258 st 353 m, sm
H_2O -Libration $v_4(CO_2^{2^-})$	(545) ssch 704 m. sm	704.5 m. sm	704.5 m. sm
$v_4(CO_3^{2^-})$ $v_2(CO_3^{2^-})$	767 ssch, sm 784 st, sm 806 st, sm	784 st, sm 807 st, sm	784 st, sm 806 st, sm
δ(OH) oder	(815) schul 868 ssch 898 ssch		
v _s (OUO)	(905) schul 917 sch, sm	070	071 est
$\delta(OH)$	954 sst 1 007 ssch	979 sst	971 SSC
$v_1(CO_3^2)$?	1 113 sch, sm 1 315 sch	1 115 sch, sm	1 115 sch, sm
$v'_{3}(CO_{3}^{2^{-}})$ $v'_{3}(CO_{3}^{2^{-}}-I)$ $v'_{3}(CO_{3}^{2^{-}}-II)$	1 426 sst (1 510) schul, sch 1 543 sst	1 422 sst 1 509 bis 21 sst	1 425 sst 1 514 bis 35 sst
δH ₂ O	1 666 st, sm	1 200	1.701h. h
Kombinations- oder Mehrfach- frequenzen	nicht gemessen (2 628) ssch (2 665) ssch 2 720 ssch, sm	1 790 ssch, b 1 832 ssch, sm 1 901 ssch, sm (2 510) schul 2 632 ssch, sm	1 791 ssch, b 1 832 ssch 1 901 ssch (2 510) schul
v(OH)	3 402 st, sm (3 530) schul		

beobachtet. Wie aus der Analyse des Bereichs der H₂O-Deformationsschwingungen bei 1600 cm⁻¹ gefolgert wurde, haben die Produkte der hydrothermalen Synthese kein kristallisches Molekularwasser, während die Tieftemperaturprodukte der Phase B solches aufweisen. Die Wellenzahl $\delta_{H_2O} = 1675 - 1680$ cm⁻¹ ist höher als die bei α -UO₃.2 H₂O (1627 cm⁻¹), so daß von uns nicht gefolgert werden kann, daß die Phase B ein bloßes Gemisch von UO₂CO₃ und UO₃.2 H₂O vorstellt, wiewohl sich die für α -UO₃.2 H₂O charakteristischen Skelettschwingungen der U—O-Bindungen ohne Änderung zeigen und ziemlich intensiv sind (547, 465 und 445 cm⁻¹). Wie aus dem hohen Wert der δ_{H_2O} -Deformationsschwingung und der entsprechenden Valenzschwingung v_{oH} = 3405 bis 3408⁻¹ geschlossen werden kann, ist in der Struktur das Molekülwasser durch starke Wasserstoffbrücken (2,80–2,85 Å) gebunden. Das Band des v_{as}(OUO) der Phase B, die bei 953 bis 958 cm⁻¹ liegt, ist identisch mit der Uranylfrequenz in α -UO₃.2 H₂O. Das Infrarotspektrum des synthetischen Uranylcarbonats wurde bereits früher von Jones²¹ und Hoekstra²² gemessen, die jedoch

Авв. 3

Derivatogramm der Phase B (Probe Nr. 1) Erhitzungsgeschwindigkeit 10°C/min, Einwaage 0,200 g.

DTA-Kurve der Phase C

DTA, Empfindlichkeit 0,05; Erhitzungsgeschwindigkeit $10^{\circ}C/min$. Sandwich packing (Al_2O_3) . 1 Probe Nr. 4 (0,030 g), 2 Probe Nr. 5 (0,030 g), 3 Probe Nr. 6 (0,0053 g + 0,0032 g Al_2O_3). lediglich die Werte für Uranyl anführen. Die gemessenen Uranylfrequenzen unterscheiden sich wesentlich voneinander. Der von Jones gemessene Wert von $v_{as}(OUO)$ beträgt 930 cm⁻¹ und bei Hoekstra 965 cm⁻¹. Von Jones wird die Herstellung und chemische Analyse des verwendeten Uranylcarbonats nicht angeführt. Wahrscheinlich stellt die Phase B eine feste Lösung des Uranylcarbonats und des Dihydrats des Uran(VI)-oxids mit der Allgemeinformel x UO₂CO₃. y UO₂(OH)₂. z H₂O bzw. [UO₂(CO₃)_{1-x}(OH)_{2x}].y H₂O vor.

Phase C, UO2CO3.2,2 H2O. Die Phase C bildet sich bei der Kohlendioxidabsorption aus der Luft durch wäßrige Suspensionen des amorphen UO₃, U₃O₈ und α-UO₃.2 H₂O unter Normalbedingungen. In unserem Fall ist sie in den Proben Nr. 4 und 5 und in der reinsten Form in der Probe 6 (Tab. I) enthalten. Bei der Probe Nr. 4 und 5 bewegt sich das Molverhältnis von CO2/UO3 zwischen 0,4 und 0,53, während die Probe Nr. 6 hydratisiertes Uranylcarbonat mit dem Molverhältnis UO₂ : CO₂ : : $H_2O = 1$: 1,01 : 2,2 vorstellt. Wie durch röntgenometrische Analyse festgestellt wurde, behalten die Proben Nr. 4 und 5 auch bei relativ hohem Kohlendioxidgehalt die Struktur des α-UO₃.2 H₂O. Es treten nur Anzeichen der Gegenwart einer neuen Phase (Tab. VII) in Erscheinung. Demgegenüber zeigen sich jedoch Unterschiede sowohl in den DTA-Kurven (Abb. 4) als auch in den Infrarotspektren. Die DTA-Kurven unterscheiden sich markant von α-UO3.2 H2O, namentlich durch einen exothermen, bei allen drei Proben beobachteten Peak bei 320-340°C. Da ein ähnliches Maximum bei der Phase B mit teilweiser Decarbonisation, und zwar gleichfalls bei Temperaturen von 320-340°C, verbunden ist, kann vorausgesetzt werden, daß es sich auch bei den die Phase C enthaltenden Proben um eine, in diesem Fall vollständige Decarbonisation handeln kann, da sich im Bereich von 600°C bereits weitere Reaktionen und die ihnen entsprechenden endothermen Peaks (Decarbonisation, bzw. UO3-Zersetzung) nicht mehr markanter zeigen, wodurch sich diese Proben sowohl von der Phase B als auch von den hydrothermalen Proben unterscheiden. Zum Unterschied von den genannten Proben verläuft jedoch die thermische Sharpitzersetzung - auf Grund einer einzigen ursprünglichen Analyse - ähnlich wie die der Phase C. Nach verlängertem Erhitzen auf 325°C enthält die Probe weder Wasser noch Kohlendioxid und erst beim Erhitzen auf höhere Temperatur erfolgt Entstehen von U₃O₈ durch Zersetzung von UO₃, das, wie auch von Mélon²³ vorausgesetzt wird, zwangsläufig bei der Temperatur von 325°C entsteht. Die Probe Nr. 6. die als reine Phase C angenommen werden kann, zeigt ein, sowohl von der Phase A als auch von B, bzw. HT vollkommen unterschiedliches Röntgenogramm. Dies deutet also auf die Existenz einer neuen Phase hin. Da, wie bereits angeführt wurde, diese Strukturänderung in den Röntgenogrammen der Proben Nr. 4 und 5 nicht markanter in Erscheinung tritt und die Struktur des α-UO3.2 H2O erhalten bleibt, kann geschlossen werden, daß die Änderung, bzw. Umgruppierung der Struktur des α-UO₃.2 H₂O in eine neue Struktur der Phase C von dem Entstehen einer vorübergehend röntgenamorphen Phase begleitet werden. Zum Unterschied von den Röntgenogrammen zeigen sowohl die Thermogramme als auch die Infrarotspektren der Proben Nr. 4, 5 und 6 (Tab. VIII), daß es sich in allen diesen Fällen um eine vollkommen neue Phase handelt, die sich am markantesten in der Probe Nr. 6 äußert. Bei dieser Tieftemperaturphase C wurde das Uranylband bei 930 cm⁻¹ (Wellenzahl stimmt mit den Jonesschen²¹ Angaben überein) hergestellt. Aus der Verringerung des v₃(OUO) im Vergleich mit den Phasen A, B und HT, die im weiteren besprochen werden und bei denen ein übereinstimmendes Koordinationspolyeder um das Uran-Atom mit der Koordinationszahl 8 vorausgesetzt wird, kann auf eine Änderung der Liganden in der äquatorialen Uranylebene geschlossen werden. Wahrscheinlich erfolgt, ähnlich wie beim Übergang der α - in die β -Modifikation beim UO₂(OH)₂, Verringerung der Anzahl der koordinierten Liganden in der Äquatorialebene des Uranyls von sechs auf vier, wobei sich die Liganden fester binden. Damit erleidet die Bindung des Uranylsauerstoffs an das Uran eine Schwächung, die die Verminderung der Frequenz der Uranylschwingung zur Folge hat. Die größere Anzahl von Banden (4-6) im Bereich von $v_3(CO_3^{2-})$ kann bedeuten, daß das Kristallgitter mehrere Arten von nichtäquivalenten CO₃²⁻-Gruppen enthält. Im Spektrum zeigen sich drei Absorptionsbanden

Sharpit²⁴ Sharpit²⁵ Probe Nr. 4^a Probe Nr. 5^a Probe Nr. 6 Irel d I.e. d d Irel Irel d d Irel 11,0 40 7.38 10 7,38 10 7.67 8 7.85 20 7.8 20 6.42 1 6.52 1 6.30 3 6,34 20 6.4 20 1 5,05 1 4.95 6 5,34 5,3 5,11 40 30 10 4.91 4,44 1 4.49 100 4,5 4,45 1 20 4,30 4,31 1 4,22 1 40 4,29 100 3.93 1 3.86 1 3,95 6 3,93 60 3.92 30 3.72 1 3,67 5 3,56 10 3,55 10 3,565 6 3,47 5 3,455 3 3,42 1 3,31 1 3.34 5 3,31 50 3.20 9 3.18 8 3,183 8 3,18 40 3.14 6 3.12 3 2,964 1 2,99 60 2,99 30 2.853 4 2,731 1 2.74 5 2,77 20 9 2,622 2,62 40 2,62 60

TABELLE VII Debyegramme der Phase C und des Sharpits

Chemie	der	Uranylcarbor	iate I	
--------	-----	--------------	--------	--

TABELLE VII

(Fortsetzung)

Probe 1	Nr. 44	Probe N	Nr. 5 ^a	Probe	Nr. 6	Shar	pit ²⁴	Sharp	bit ²⁵
d	Irel	d	Irel	d	Irel	d	Irel	d	Irel
2,54	4	2,54	2						
		,		2,494	1	2,477	60	2.45	40
				2,422	1			_,	
				2,349	4	2,355	20	2.36	40
				2,210	1	2,237	20	2,24	10
2,13	1					2,153	40	2,15	10
2,08	1	2,07	1			2,071	40	2.06	50
2,03	1	2,02	2	2,019	3			-,	
2,00	1	1,996	1			1,990	20	2,00	30
1,961	1	1,961	3	1,935	5	1,899	40	1.90	30
1,818	1			1,849	1			1,83	50
1,776	1	1,776	2					1,78	20
1,738	1	1,734	2	1,747	4				
1,696	1								
1,662	1	1,660	1						
1,616	1	1,611	1						
1,569	1								
								1,52	20
								1,50	10
				1,454	4			1,44	10
								1,39	20
				1,311	1			1,35	10
								1,28	20
								1,19	10
								1,18	10

^a Debyegramme der Proben Nr. 4 und 5 entsprechen im wesentlichen dem Schoepit (Phase A) und deuten nur die Gegenwart einer neuen Phase an.

v(OH). Das erste Band entspricht dem ähnlichen Wasserstoff band wie in α -UO₃.2 H₂O; die Frequenz seines Maximums schwankt. Das zweite Band ist als Äußerung einer Wasserstoff brücke anzusehen, und zwar ähnlich der, die vor allem bei der Struktur des Typs B in Erscheinung tritt. Das dritte Band deutet darauf hin, das noch eine Form einer sehr starken Wasserstoffbrücke zugegen ist. Mit Rücksicht darauf, daß, wie aus der Umgruppierung des im Museum befindlichen Ianthinits in Sharpit²⁴ durch Luftsauerstoffoxydation unter gleichzeitiger Hydratation und Absorption von Kohlendioxid aus der Luft geschlossen werden kann, die Bedingungen des

Čejka, Urbanec:

Entstehens der Phase C denen der Sharpitbildung nahe sind, könnte unserer Meinung nach die Phase C zufolge ihrer Eigenschaften und Struktur dem natürlichen Sharpit entsprechen, auch wenn der Vergleich der Röntgenogramme dem nicht vollständig entspricht. Dieses Problem könnte in dem Fall gelöst werden, wenn nicht nur die Röntgenogramme (vorläufig stehen nur zwei für Sharpit zur Verfügung, ohne daß gleichzeitig die Analyse dieser Sharpitproben angeführt wird^{24,25}), sondern auch die Infrarotspektren des Sharpits und der Phase C verglichen und ebenso den von

TABELLE VIII

Interpretation	Phase C (Probe Nr. 6)	Probe Nr. 4	Probe Nr. 5
ν(UO)	413 m		
v(UO)	448 ssch	448 m (485) m	448 m, sm (485) sch
v(UO)	525 m, sm	525 m, b	528 m
v(UO)	601 sch		605 ssch
$v_4(CO_3^{2-})$	662 m	678 sch (720) ssch?	667 sch (725) ssch?
?	781 ssch, sm	(782) ssch?	785 ssch
$v_2(CO_3^2)?$	828 sch, sm	(825) ssch?	826 sch, sm
v _s (OUO)?	849 ssch, sm		849 ssch, sm
$v_2(CO_3^2)$	870 sch, sm		870 ssch, sm
v _{as} (OUO)	930 st, m	931 st, m	931 st, m
δ(OH)?	1 025 ssch	1 020 sch 1 120 sch, schul	1 021 sch 1 120 sch, schu
$\delta(OH)$	1 151 m, sm	1 147 sch	1 145 sch
$v_3(CO_3^{2^-})$	1 360 sch, sm	1 360 sch	1 360 sch, sm
$v_3(CO_3^{2-})$	(1 390) ssch, b	1 392 ssch 1 430 ssch	1 392 ssch 1 430 ssch
$v_3(CO_3^2)$	1 472 ssch	1 472 ssch	1 472 ssch
$v_3(CO_3^2)$	1 518 ssch		1 518 ssch
$\nu_3(CO_3^2)$	1 558 m	1 553 sch	
$\delta(H_2O)$	1 612 m	1 619 m, sm	1 618 m, sm
v(OH)	(3 300) m, sb	(3 250) st, sb	3 275 st, sb
ν(OH)	3 430 st, sm	3 430 st, sm 3 535 sch?	3 435 m 3 580 m

Infrarotspektren der Phase C Erklärungen siehe Tabelle IV. Černjajev und Mitarbeitern¹⁴ (UO_2CO_3 , H_2O), von Kašpar²⁶ (basisches Uranylcarbonat), von Sahoo und Patnaik²⁷ (UO_2CO_3 .2,5 H_2O) sowie von Gauthier und Wey²⁸ (UO_2CO_3 .0,5 H_2O) gegenüber gestellt werden, falls allerdings eingehendere Vorstellungen hinsichtlich der Zusammensetzung und Strukturänderung dieser drei zuletzt genannten Verbindungen gewonnen werden.

Phase HT, $UO_2(CO_3)_{1-x}(OH)_{2x}$, $x \ge 0$. Es wurde eine Reihe von in Tabelle II angeführten Proben hergestellt. Nur in einem Fall wurde eine kein Wasser enthaltende Phase gewonnen (Probe Nr. 11). Alle übrigen Proben enthalten kleinere Mengen Wasser, das wahrscheinlich aus der OH⁻-Gruppe des ursprünglichen α -UO₃.2 H₂O oder vom Zwischenschichtwasser herrührt; die Gegenwart von kristallinem Molekülwasser wurde zum Unterschied von den Tieftemperaturprodukten nicht nachgewiesen. Wie die Röntgenogramme der hergestellten Phasen (Tab. V) zeigten, entstand in allen Fällen die dem Uranylcarbonat Rutherfordin entsprechende Struktur. Werden die hergestellten Proben auf Grund der chemischen Analyse gewertet, dann können sie

Авв. 5

Derivatogramm der Phase HT I (Probe Nr. 8) Erhitzungsgeschwindigkeit 10°C/min, Einwaage 0,200 g.

Авв. 6

Derivatogramm der Phase HT II (Probe Nr. 10)

Erhitzungsgeschwindigkeit 10°C/min, Einwaage 0,200 g. im wesentlichen in zwei Gruppen geteilt werden, einerseits in die hydrothermales Uranylcarbonat enthaltende, dessen Zusammensetzung sich der des UO_2CO_3 nähert, andererseits in die feste Lösung von Uranylcarbonat und -hydroxid mit der Allgemeinzusammensetzung $(1 - x) UO_2CO_3 \cdot x UO_2(OH)_2$, wo x von den Versuchsbedingungen und der Reaktivität des Uran(VI)-oxids abhängig ist. Typisch ist, daß sich auch die Färbung der Phasen mit sinkendem OH⁻-Ionengehalt von Gelb, bzw. von Gelblich, bis in Weißgrau verändert.

Auch bei den hydrothermalen Phasen zeigten sich Unterschiede beim Verlauf der thermischen Analyse. Die DTA-Kurven einiger hergestellter Phasen sind in Abb. 2 angeführt (Derivatogramme siehe Abb. 5 und 6). Die mit dem Molekülzerfall und Freiwerden von CO₂ sowie mit dem Übergang in UO_x, bzw. U₃O₈ verbundene hauptsächliche Zersetzung verläuft in Übereinstimmung mit den Literaturangaben^{13,15,16} bei Temperaturen um 600°C. Das endotherme Maximum zeigt sich auf den DTA-Kurven ungefähr bei 610°C (Černjajev und Mitarbeiter¹⁴ fanden den Peak der endothermen Reaktion bei ca. 515°C). Sowohl bei den hydrothermalen Proben des Uranylcarbonats als auch bei den hydrothermalen festen Lösungen können auf den DTA-Kurven endotherme Peaks, verbundene mit dem Freiwerden kleiner Mengen Wasser und der OH⁻-Gruppe, registriert werden (die Größe dieser Änderungen ist proportional dem Gehalt der angeführten Komponenten in den einzelnen Proben), worauf, wie bereits angeführt, Freiwerden des Kohlendioxids und Zerfall des Kristallgitters erfolgt. Wie aus unseren Ergebnissen geschlossen werden kann, kommt es mit wachsendem OH⁻-Ionengehalt und sinkendem CO₃²⁻-Ionengehalt im Molekül zu einer bestimmten Verschiebung des Peaks der endothermen Decarbonisationsreaktion in der Richtung zur niedrigeren Temperatur (von 610°C zu ca. 580°C), wobei in einigen Fällen die mit Decarbonisation verbundene endotherme Reaktion und eine weitere, mit der UO₂-Zersetzung verbundene endotherme Reaktion unterschieden werden kann, wie dies auch bei der DTA-Kurve in diesem Bereich aufgezeigt wird. Zu ähnlichen Schlüssen kann man auch durch Zerlegen des Derivatogramms der untersuchten Phasen gelangen (Abb. 3 und 5). Es kann nicht der Schluß gezogen werden, ob gleicherweise, wie bei der Phase B registriert wurde, Decarbonisation bei den hydrothermalen Proben mehrstufig verläuft. Da sich in den Infrarotspektren der Proben aus den hydrothermalen Herstellungen $v_{ac}(OUO)$ einerseits bei 979 cm⁻¹, andererseits im Bereich von 973-968 cm⁻¹ bot (Tab. VI), wurden die Bedingungen und Ursachen der Bewegung der Wellenzahl dieses Bandes festgestellt. Es wurde der Kohlendioxiddruck durch Änderung der Reaktionstemperatur oder durch Zugabe verschiedener Mengen von festem Kohlendioxid zum Reaktionsgemisch geändert. Die Verringerung der Menge des zugegebenen Kohlendioxids führte zur Bildung von Gemischen. Neben Uranylcarbonat entstand eine größere Menge Uranylhydroxid der α - oder β -Modifikation, ein Umstand, der sich durch charakteristische Banden im Infrarotspektrum und bei der mikroskopischen Beobachtung zeigte, da Uranylhydroxid Kristalle von größeren Ausmaßen und charakteristischen Formen bildet. Bei Versuchen, in denen das gründliche Reagieren des Gemisches durch zeitweises Schütteln sichergestellt wurde, wurden folgende Änderungen gefunden:

Temperatur, °C	200	140	105
$v_{as}(OUO), cm^{-1}$	980	973	969

Die letztere Herstellung stimmte im wesentlichen mit den von Hoekstra²² verwendeten Bedingungen überein und auch die Uranylfrequenz nähert sich diesen Ergebnissen, d. i. 965 cm⁻¹. Die mit Carbonatschwingungen verbundenen Absorptionsbanden bleiben sowohl bei der Tieftemperaturphase als auch bei den hydrothermalen Phasen im Bereich von 600–1200 cm⁻¹ ohne Änderung. Der Bereich von $v_3(CO_3^{2-})$ ist veränderlich und die Lage der gespaltenen Banden von v_3 ändert sich von einer Herstellung zur andern. Das Spalten ist geringer als das bei der Phase B. Wie aus der röntgenometrischen Analyse geschlossen werden kann, ändern sich die Gitterparameter der Phase HT bei höherem Gehalt an hydroxidischer Komponente.

SCHLUSSFOLGERUNG

Wie sich aus den Versuchen ergibt, kann im System UO₃--CO₂--H₂O zwischen den Randverbindungen α-UO₃.2 H₂O (Phase A in dieser Arbeit) und UO₂CO₃ (theoretisch wasserfreies Uranylcarbonat) eine Reihe von Phasen, fester Lösungen, existieren, deren Struktur von den Entstehungsbedingungen abhängig ist. Bei Normaltemperatur der Kohlendioxidabsorption aus der Luft bildet sich eine feste Lösung von der allgemeinen Zusammensetzung $(1 - x) UO_2 CO_3 x UO_2 (OH)_2 y H_2O$, bzw. $[UO_2]$. .(CO₃)_{1-x}(OH)_{2x}].y H₂O, die auf Grund der Röntgenstrukturanalyse auch beim Molverhältnis $CO_2/UO_3 = 0.4 - 0.53$ die Struktur des Dihydrats des Uran(VI)-oxids beibehält, also auch dann, wenn sowohl die thermische Analyse als auch die Infrarotspektren das Entstehen einer neuen Struktur aufzeigen. Der Zerfall der Struktur des a-UO₃.2 H₂O und die Bildung der neuen Struktur sind wahrscheinlich von der Bildung einer vorübergehend röntgenamorphen Phase begleitet. Als Endprodukt dieser Kohlendioxidabsorption aus der Luft ist das hydratisierte, summarisch vorläufig als UO2CO3.2,2 H2O ausgedrückte Uranylcarbonat anzusehen (Phase C in dieser Arbeit). Mit Rücksicht darauf, daß die Bildung dieser Phase schneller aus U₃O₈ als aus UO₃ erfolgte, liegt die Vermutung nahe, daß der gleichzeitig mit der CO2-Absorption aus der Luft verbundene Hydratations-Oxydationsprozeß schneller verläuft als die reine Kohlendioxidabsorption, und zwar in Übereinstimmung mit dem Entstehen des Sharpits durch die mit der CO2-Absorption aus der Luft verbundene Hydratations-Oxydationsreaktion des Ianthinits24 mit der Zusammensetzung U₃O_{8+v} x H₂O. Im Kohlendioxidüberschuß bildet sich sowohl bei normalem Druck und Normaltemperatur als auch bei hydrothermalen Bedingungen eine auf

Grund der röntgenometrischen Analyse eine im wesentlichen übereinstimmende Struktur aufweisende Phase, die sich auf Grund der Herstellungsbedingungen und der verwendeten Eintrittsbedingungen durch seine thermischen Eigenschaften und seine Infrarotspektren unterscheidet. In beiden Fällen kann eine Phase gewonnen werden. die sich auf Grund ihrer Zusammensetzung dem UO₂CO₂ nähert, allerdings können daneben auch Zwischenprodukte (feste Lösungen) isoliert werden, deren Eigenschaften markant von den Herstellungsbedingungen beeinflußt werden. Auch bei der Phase B von der Allgemeinformel x UO₂CO₃, y UO₂(OH)₂, z H₂O handelt es sich gleichfalls um eine feste Lösung von Uranylcarbonat und Dihydrat des Uran(VI)oxids, dessen Eigenschaften vor allem vom verwendeten α-UO₂,2 H₂O beeinflußt werden, das durch Oxydation von U₃O_{8+v}.x H₂O in Wasser mit Luftsauerstoff hergestellt wurde, und seine Reaktivität unterscheidet sich wesentlich von den Hydraten, die durch Hydratation von auf thermischem Weg hergestellten Uranoxiden gewonnen wurden, wobei diese weniger reaktiv sind. Die angeführten Feststellungen führen zur Voraussetzung, daß mit Rücksicht auf den von Marckwald¹⁸ beschriebenen Verlauf der thermischen Zersetzung des Minerals Rutherfordin die Identität des Rutherfordins mit dem hydrothermal hergestellten Carbonat nicht als voll nachgewiesen angenommen werden kann, solange keine Angaben über die Infrarotspektren* und eine verläßliche thermische Analyse des Rutherfordins zur Verfügung stehen. Unsere Schlußfolgerung geht dahin, daß auch unter natürlichen Bedingungen Uranylcarbonate, bzw. feste Lösungen von hydratisierten Aquohydroxocarbonaten des Uranyls eher durch Hydratations-Oxydationsprozesse aus primären Uranmineralen, beispielsweise aus Uranitit über Ianthinit, U₃O_{8+v}.x H₂O entstehen können, wobei die Frage der Endform, d. i. ob Sharpit oder Rutherfordin entstehen, vom Partialdruck des Kohlendioxids abhängig ist. Beim P_{CO}, nahen Partialdruck des Kohlendioxids in der Luft entsteht Sharpit, während sich bei höherem P_{CO}, Rutherfordin bildet. Beide Minerale können auch aus hydratisierten Formen des Uran(VI)-oxids entstehen, dieser Prozeß ist allerdings wesentlich langsamer, für ihn sind hydrothermale, mit der Rutherfordinbildung verbundene Bedingungen günstiger. Es kann gefolgert werden, daß auch Alteration des Rutherfordins erfolgt^{29,30}. Wie festgestellt wurde, wird das Ianthinit einmal zu Schoepit³¹, ein anderes Mal zu strukturell von Schoepit unterschiedlichem³² UO_{3.2} H₂O oxydiert und kann schließlich auch durch Einwirkung von Luftkohlendioxid in Sharpit übergehen²⁴. Selbstverständlich müssen unter natürlichen Bedingungen weitere Veränderungen dieser Minerale vorausgesetzt werden. Alle diese Tatsachen deuten auf den komplizierten Verlauf der Hydratations-Oxydationsprozesse der von Garrels und Christ³³ in vereinfachter Form erörterten Veränderung der primären Uranminerale in der Verwitterungszone hin. Die Abhängigkeit dieser Prozesse vom Kohlendioxidpartialdruck ist offensichtlich markanter, als ursprünglich vorausgesetzt wurde, und selbst geringfügige Unterschiede im

 ^{*} Siehe Bemerkung bei der Korrektur.

Partialdruck des Luftkohlendioxids können in guter Übereinstimmung mit den Weyschen Vorstellungen³⁴ zum Entstehen verschiedener Phasen führen.

Die von uns eingeleitete eingehende Untersuchung dieser Minerale ermöglicht eine exaktere Interpretation der angeführten Schlußfolgerungen. Sie wird Gegenstand einer der weiteren Mitteilungen dieser Reihe ebenso wie auch einer eingehenden Beschreibung der Eigenschaften und Struktur der einzelnen synthetisierten Phasen sein.

Auch das Problem des Systems $UO_3 - H_2O$ in der Natur ist wahrscheinlich komplizierter; darauf deuten in ihrer Arbeit Christ und Clark^{35,36} hin, die unter anderem die Alteration von Schoepit beschreiben, drei verschiedene Phasen identifizieren und diese Veränderungen vom strukturellen Gesichtspunkt aus besprechen. Solche Erwägungen überschreiten jedoch den Rahmen der vorliegenden Mitteilung und werden später in einer selbständigen Arbeit behandelt.

Abschließend sprechen wir Dr. C. L. Christ, U.S. Geol. Survey, und Prof. R. Wey, ENSCh de Mulhouse für das dieser Arbeit entgegengebrachte Interesse und für die Diskussion einiger Teilprobleme unseren Dank aus; desweiterendanken wir Dipl.-Ing. K. Strånský, Frau V. Rusová und Herrn V. Štérba für die Durchführung der Elementaranalysen, Dipl.-Ing. F. Jursik und Frau V. Matulová für die Anfertigung der Röntgenogramme, den Frauen E. Šourková, M. Bezuchová für die Messung der Infrarotspektren und die technische Mitarbeit sowie Dipl.-Ing. J. Körbl und Herrn E. Kraus für die Konstruktion der Derivatogramme einiger hergestellter Phasen.

Bemerkung bei der Korrektur: Inzwischen hat R. W. T. Wilkins das Infrarotspektrum von Rutherfordin veröffentlicht (Neues Jb. Miner., Mhf. 1971 (10) 440; Z. Krist. 134, 285 (1971)). Die Ergebnisse sind in guter Übereinstimmung mit unseren unter hydrothermalen Bedingungen hergestellten Phasen.

LITERATUR

- Frondel C.: Systematic Mineralogy of Uranium and Thorium. U.S. Geol. Survey Bull. 1064 (1958).
- Urbanec Z.: Dissertation. Tschechoslowakische Akademie der Wissenschaften, Prag Řež 1966.
- 3. Miller P. D., Pray H. A., Munger H. P.: USAEC Report AECD 2740 (1949).
- 4. Čejka J.: Dissertation. Technische Hochschule für Chemie, Prag 1970.
- 5. Bignand C.: Bull. Soc. Franç. Minéral. Crist. 78, 1 (1955).
- 6. Čejka J.: diese Zeitschrift 24, 3180 (1959).
- 7. Cordfunke E. H. P., Prins C., Vlaanderen P.: J. Inorg. Nucl. Chem. 30, 1745 (1968).
- 8. Hoekstra H. R., Siegel S.: J. Inorg. Nucl. Chem. 18, 1547 (1961).
- 9. Mitchel B. D.: Private Mitteilung.
- 10. Pokó Z., Fodor M., Szabó E.: Acta Chim. Acad. Sci. Hung. 56, 357 (1968).
- 11. Wheeler V. J., Dell R. M., Wait E.: J. Inorg. Nucl. Chem. 26, 1829 (1964).
- Perez-Bustamente J. A., Polonio J. B., Cellini R. F.: Anales Real Soc. Espan. Fís. Quím. (Madrid) Ser. B-Quím. 58, 677 (1962).
- 13. Bachelet M., Cheylan F., Douis M., Goulette J. C.: Bull. Soc. Chim. France 1956, 441.
- 14. Černjajev I. I., Golovnja V. A., Ellert G. V.: Ž. Neorgan. Chim. 1, 2726 (1956).
- 15. Stonhill L. G.: Anal. Chim. Acta 23, 423 (1960).

- 16. Čejka J.: diese Zeitschrift 34, 1635 (1969).
- 17. Tsymbal C .: Dissertation. Faculté des Sciences de l'Université de Grenoble, 1967.
- 18. Marckwald C.: Z. Mineralog. 1906, 761.
- Geceva R. V., Savel'eva J. T.: Rukovodstvo po Opredeleniju Uranovych Mineralov, S. 180. Gosgeoltechizdat, Moskau 1956.
- 20. Beck C. W.: Am. Mineralogist 35, 985 (1950).
- 21. Jones L. H.: Spectrochim. Acta 11, 409 (1959).
- 22. Hoekstra H. R.: Inorg. Chem. 2, 492 (1963).
- 23. Mélon J.: Inst. Royal Colon. Belge Bull. 9, 333 (1938).
- Vaes J. F.: Minéraux d'Uranium du Haut Katanga. Les Amis du Musée Royal du Congo Belge, Tervuren 1958.
- 25. Neumann H.: Private Mitteilung.
- Kašpar J.: Sborník Vysoké školy chemicko-technologické, Prag, Institut für anorganische und organische Technologie 3, 197 (1959).
- 27. Sahoo B., Patnaik D.: Nature 185, 683 (1960).
- 28. Gauthier M., Wey R.: Compt. Rend. 255, 1626 (1962).
- 29. Clark J. R., Christ C. L.: Am. Mineralogist 41, 844 (1956).
- 30. Christ C. L .: private Mitteilung.
- 31. Guillemin C., Protas J.: Bull. Soc. Franç. Minéral. Crist. 82, 80 (1959).
- 32. Frondel J. W., Cuttita F.: Am. Mineralogist 39, 1018 (1954).
- 33. Garells R. M., Christ C. L.: U.S. Geol. Survey Profess. Paper 320, 81 (1959).
- 34. Wey R .: private Mitteilung.
- 35. Christ C. L., Clark J. L.: Am. Mineralogist 45, 1026 (1960).
- 36. Christ C. L.: Am. Mineralogist 50, 235 (1965).
- 37. Protas J.: Dissertation. Faculté des Sciences de l'Université de Paris, 1959.
- 38. Péters J. M.: Mém. Soc. Roy. Sci. Liège (5) 14, 40 (1967).

Übersetzt von K. Grundfest.